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Problem Statement
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Sheet music is helpful, but it’s:
● Hard to read
● Hard to learn from
● Hard to “hear the music”
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Functional Requirements

● App can take picture & send it to backend CV algorithm.
● CV algorithm identifies sheet music components.
● CV algorithm translates symbols to a music data structure.
● Data sent back to app, and app plays music based on data.
● App shows a piano being played while music is played.
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Non-Functional Requirements

● Computer vision algorithm should be able to analyze the 
sheet music in less than 15 seconds.

● Algorithm should detect most beginner music symbols.
● Application’s music playback should “sound as accurately 

as possible”.
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Constraints and Considerations

● Multi platform application.
● Different styles of sheet music.
● Many different symbols to interpret in sheet music.

○ What is “Beginner sheet music”?
● Operating conditions (Lighting, Camera quality).
● Computer vision may be computationally expensive.
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Risks

● Encrypting requests to the server.
● Legality (Photography/Storing of copyrighted music).
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Market survey 
● Sheet Vision

○ Single line only.
○ Only creates MIDI file.

● Musescore
○ Existing created sheet music.
○ Does not show how to play.

● Playscore
○ Poor UI.
○ Misaligned progress bar.
○ Does not show how to play.
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System Design
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Functional Decomposition

● User scans or selects a sheet music from their gallery and 
sends it to the server.

● User watches a preview of how to play in accordance to 
the sheet music.

● User plays the piano to simulate the sheet music.
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Video Demo
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http://www.youtube.com/watch?v=2b3LMTyzI4I


General Architecture
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Frontend:
React Native/Expo
● Modular
● Multiplatform
● Javascript

Backend: 
AWS

● Lambda, S3, 
API Gateway

● OpenCV 4.0
● Python 3.6



How does AWS work?
● AWS API Gateway

○ REST API, sends/receives data to 
different Amazon Web Services.

● AWS S3
○ Buckets contains application files.
○ Files can trigger Lambda functions.

● AWS Lambda
○ Write serverless code in any language.
○ Return data back in a response, or post 

back data into S3.
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Computer Vision Algorithm

Runs on AWS in four stages:
1. Image sectioning .
2. Staff/Bar identification.
3. Note extraction.
4. Note mapping and JSON construction.
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1. Image Sectioning
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Convert to Grayscale Gaussian Threshold
(Fixes lighting differences)

Find Contours 
(Find largest white object, 

erase all else)

Find Contours 
(Find largest black objects)



2. Staff/Bar Identification
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Hough lines (Find all fitting lines in the image)

Five custom lines found from Hough lines

Hough lines dual space (Each blue dot is a line)



3. Note Detection

21

sddec19-13



4. Notes To Music Data Structure
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* there were very few whole, half and eighth rests



Test Plan

● AWS Lambda Testing Suite
○ Request Tests

● Functional Testing
○ Application usability
○ Algorithm accuracy
○ Audio “smell test”

● Community Testing
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Risks Mitigations
● Requests sent are unencrypted.

○ No user data is ever collected or sent to our databases.
○ No risk to our users data.
○ PUT and GETS to AWS lambda only allowed by our client.
○ Data being posted to our S3 buckets and processed is 

ignored if not of the correct format.
● Legality

○ Sheet music stored only temporarily on app/backend.
○ Not distributing copyrighted material.
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Challenges -Backend

● React-Native doesn’t allow requests to and from pages 
with no Authorized SSL certificates.

● No way to add our EC2 server to Certificate Authorities on 
Mobile, especially since it’s self-signed.

● AWS Lambda request sizes are limited to 10 MB (images 
can be larger sometimes).

● Machine Vision algorithm requires clear images 
(compression wasn’t an option.)

● AWS S3 triggers don’t support POST.
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Innovations

Strange request structure to accommodate for limitations.
● PUT request to S3 (base64 string of image).
● S3 triggers lambda function on upload.
● Store result back in S3.
● Get average of how long a request returns.
● Add on the standard deviation.
● Have client GET the output from S3 after given time.

27

sddec19-13



Challenges -Computer Vision

● Image sizing issues
○ Broke symbol detection.
○ Solved by dynamically sizing symbol templates.

● Accuracy issues
○ Still an issue.
○ Reduced by using dynamically sized templates.

● Reducing runtimes

28

sddec19-13



Challenges -Frontend
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● Expo libraries
○ Lack of documentation & examples.
○ Cross Platform diversity.
○ Constraints between Expo and React Native.

● Technologies
○ React Native.
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Conclusion
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Current Project Status

● App main functionalities work as described.
● Machine vision model completed.
● AWS connected with every component.
● Communication between server and app fully functional.
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● Use more well-known development platform
○ Android Studio, XCode, React Native.

● Multiplatform code very inconsistent. Could be easier to 
work with platforms indepently.

● Continue with AWS
○ Fantastic platform for hosting applications
○ Research more about limitations and interactions with 

client platforms before finalizing our choices.

Future Implementations -Frontend/Backend
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Future Implementations -Machine Vision

● Improve performance.
● Improve accuracy.
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Task Responsibility/Contributions
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Name Responsibility

Bryan Fung Frontend Developer

Garrett Greenfield Frontend Developer

Ricardo Faure Frontend/Backend Architect

Trevin Nance Machine vision Engineer

Walter Svenddal Machine vision Engineer
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Questions?
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